
 Security intelligence

Vulnerability Scanner Tools

 Security intelligence

Difference between Penetration Testing and Vulnerability
Assessment?

• Vulnerability Assessment:

– Typically is general in scope and includes a large assessment.

– Predictable. (I know when those darn Security guys scan us.)

– Unreliable at times and high rate of false positives. (I‟ve got a banner)

– Vulnerability assessment invites debate among System Admins.

– Produces a report with mitigation guidelines and action items.

• Penetration Testing:

– Focused in scope and may include targeted attempts to exploit specific
vectors (Both IT and Physical)

– Unpredictable by the recipient. (Don‟t know the “how?” and “when?”)

– Highly accurate and reliable. (I‟ve got root!)

– Penetration Testing = Proof of Concept against vulnerabilities.

– Produces a binary result: Either the team owned you, or they didn't.

 Security intelligence

Vulnerability Assessment

 Security intelligence

Nessus

 Security intelligence

Nessus

 Security intelligence

Nessus

 Security intelligence

Nessus

 Security intelligence

OpenVas: http://www.backtrack-

linux.org/wiki/index.php/OpenVas

 Security intelligence

OpenVas

 Security intelligence

OpenVas

 Security intelligence

Enumeration

 Security intelligence

Objective

• Overview of system Hacking Cycle

• Enumeration

• Techniques for Enumeration

• Establishing Null Session

• Enumerating User Accounts

• Null user Countermeasures

• SNMP Scan

 Security intelligence

Objective (cont’d)

• MIB

• SNMP Util Example

• SNMP Enumeration Countermeasures

• Active Directory Enumeration

• AD Enumeration Countermeasures

 Security intelligence

Overview of System Hacking Cycle

 Security intelligence

What is Enumeration

• Enumeration is defined as extraction of user names, machine
names, network resources, shares, and services

• Enumeration techniques are conducted in an intranet environment

• Enumeration involves active connections to systems and directed
queries

• The type of information enumerated by

– Network resources and shares

– Users and groups

– Applications and banners

– Auditing settings

 Security intelligence

Netbios Null Sessions

• The null session is often refereed to as the Holy Grail of Windows
hacking. Null sessions take advantage of flaws in the CIFS/SMB
(Common Internet File System/Server Messaging Block)

• You can establish a null session with a Windows (NT/200/XP) host by
logging on with a null user name and password

• Using these null connections, you can gather the following information
from the host:

– List of users and groups

– List of machines

– List of shares

– Users and host SIDs (Security Identifiers)

 Security intelligence

So What’s the Big Deal

 Security intelligence

NetBIOS Enumeration Using Netview (cont’d)

 Security intelligence

Nbtstat Enumeration Tool

• Nbtstat is a Windows command-line tool that can be used to
display information about a computer‟s NetBIOS connections
and name tables

– Run: nbtstat –A <some ip address>

• C:\nbtstat

– Displays protocol statistics and current TCP/IP connections using

NBT(NetBIOS over TCP/IP).

– NBTSTAT [-a RemoteName] [-A IP address] [-c] [-n] [-r] [-R] [-s]
[S][interval]]

•

 Security intelligence

Null Session Countermeasures

• Null sessions require access to TCP 139 and/or TCP 445 ports

• Null sessions do not work with Windows 2003

• You could also disable SMB services entirely on individual hosts by
unbinding the WINS Client TCP/IP from the interface

• Edit the registry to restrict the anonymous user:

• Step1: Open regedt32 and navigate to

– HKLM\SYSTEM\CurrentControlSet\LSA

• Step2: Choose edit | add value

– value name: Restrict Anonymous

– Data Type: REG_WORD

– Value: 2

 Security intelligence

Nmap Script (NSE)

106

 Security intelligence

Zenmap (NSE Mode)

107

 Security intelligence

System Hacking

 Security intelligence

CRACKING PASSWORD

 Security intelligence

Types of Password Attacks

• Passive online attacks

• Active online attacks

• Offline attacks

• Non-electronic attacks

 Security intelligence

Passive Online Attack: Wire Sniffing

• Access and record the raw network traffic

• Wait until the authentication sequence

• Brute force credentials

• Considerations:

– Relatively hard to perpetrate

– Usually computationally complex

– Tools widely available

 Security intelligence

Passive Online Attack:Man-in-the- Middle
and Replay Attacks

• Somehow get access to the communications
channel

• Wait until the authentication sequence

• Proxy authentication-traffic

• No need to brute force

 Security intelligence

Active Online Attack: Password Guessing

• Try different passwords until one works

• Succeeds with:
– Bad passwords

– Open authentication points

• Considerations:
– Takes a long time

– Requires huge amounts of network bandwidth

– Easily detected

– Core problem: bad passwords

 Security intelligence

Offline Attacks

• Offline attacks are time consuming

• LM Hashes are much more vulnerable due to smaller key
space and shorter length

• Web services are available

• Distributed password cracking techniques are available

• Mitigations:

– Use good passwords

– Remove LM Hashes

– Attacker has password database

 Security intelligence

Offline Attacks (cont’d)

 Security intelligence

Offline Attack: Brute-force Attack

• Try all possible passwords:

– More commonly, try a subset thereof

• Usually implemented with progressive complexity

• Typically, LM “hash” is attacked first

• Considerations:

– Very slow

– All passwords will eventually be found

– Attack against NT hash is much harder than LM hash

 Security intelligence

Rainbow Attack

• In rule-based attack, password hash table is generated in
advance (only once) and during the recovery process,
cracker simply looks up the hash in these pre-computed
tables

• A rainbow table is a lookup table specially used in
recovering the plaintext password from a ciphertext

• This attack reduces the auditing time for complex
passwords

 Security intelligence

Elcomsoft Phone Password Breaker

• Brute-Force backup password with GPU

 Security intelligence

NVIDIA® Tesla™ C1060 + Intel® Core™ i7

119

 Security intelligence

Password Mitigation

• Use the following in place of passwords:

– Smart cards

• Two-factor authentication

• Difficult to thwart

• High cost of initial deployment

– Biometric

• Two- or three-factor authentication

• Usually defeated with non-technical attacks

• Very expensive

 Security intelligence

Hacking Tool: LOphtcrack

 Security intelligence

NTLM and LM Authentication on the Wire

 Security intelligence

PASSWORD CRACKING
TOOLS

 Security intelligence

Hacking Tool: John the Ripper

• It is a command-line tool designed to crack both Unix and
NT passwords

• The resulting passwords are case insensitive and may not
represent the real mixed- case password

 Security intelligence

LCP: Screenshot

 Security intelligence

Password Cracking Countermeasures

• Enforce 8-12 character alphanumeric passwords

• Set the password change policy to 30 day

• Physically isolate and protect the server

• Use SYSKEY utility to store hashes on disk

• Monitor the server logs for brute force attacks on
user accounts

 Security intelligence

LM Hash Backward Compatibility

• LAN Manager (LM) authentication

• Windows NT (NTLM) authentication

• NTLM version 2 (NTLMv2) authentication

 Security intelligence

How to Disable LM HASH

 Security intelligence

Web Application Security

© Copyright, ACIS Professional Center Company Limited, All rights reserved

 Security intelligence

The Evolution of Web Applications

 Security intelligence

The Evolution of Web Applications

• You can be Vulnerable…

– 7 out of 10 sites are vulnerable

– 70% of cyber attacks are on web ports

– 95% of companies are hacked through web ports

– Most popular attacks are towards Web Servers

– Web ports are popular targets – Securing 80 & 443 is a concern

– Web 2.0 – More on web ..

 Security intelligence

The Evolution of Web Applications

 Zone-H Digital Attacks in Thailand (Web Defacement)

 Security intelligence

www.xssed.com

 Security intelligence

www.xssed.com

 Security intelligence

Web Application Technologies

• HTTP Request and Response

– Methods – GET, POST, HEAD

– New Methods in HTTP 1.1

– Header fields: Server, Host, Length, etc.

– Response codes – 200, 403, 404, 500, etc.

 Security intelligence

What’s Changed?

• New title is: “The Top 10 Most Critical Web Application Security Risks”

It’s About Risks, Not Just Vulnerabilities

• Based on the OWASP Risk Rating Methodology, used to prioritize Top 10

OWASP Top 10 Risk Rating Methodology

• Added: A6 – Security Misconfiguration
• Was A10 in 2004 Top 10: Insecure Configuration Management

• Added: A8 – Unvalidated Redirects and Forwards
• Relatively common and VERY dangerous flaw that is not well known

• Removed: A3 – Malicious File Execution
• Primarily a PHP flaw that is dropping in prevalence

• Removed: A6 – Information Leakage and Improper Error Handling
• A very prevalent flaw, that does not introduce much risk (normally)

2 Risks Added, 2 Dropped

 Security intelligence

Mapping from 2007 to 2010 Top 10

OWASP Top 10 – 2007 (Previous) OWASP Top 10 – 2010 (New)

A2 – Injection Flaws A1 – Injection

A1 – Cross Site Scripting (XSS) A2 – Cross Site Scripting (XSS)

A7 – Broken Authentication and Session Management A3 – Broken Authentication and Session Management

A4 – Insecure Direct Object Reference A4 – Insecure Direct Object References

A5 – Cross Site Request Forgery (CSRF) A5 – Cross Site Request Forgery (CSRF)

<was T10 2004 A10 – Insecure Configuration
Management>

A6 – Security Misconfiguration (NEW)

A10 – Failure to Restrict URL Access A7 – Failure to Restrict URL Access

<not in T10 2007> A8 – Unvalidated Redirects and Forwards (NEW)

A8 – Insecure Cryptographic Storage A9 – Insecure Cryptographic Storage

A9 – Insecure Communications A10 – Insufficient Transport Layer Protection

A3 – Malicious File Execution <dropped from T10 2010>

A6 – Information Leakage and Improper Error Handling <dropped from T10 2010>

+

+

-

-

=

=

 Security intelligence

OWASP Top 10 Risk Rating Methodology

Threat
Agent

Attack
Vector

Weakness
Prevalence

Weakness
Detectability

Technical Impact
Business
Impact

?
Easy Widespread Easy Severe

?Average Common Average Moderate

Difficult Uncommon Difficult Minor

2 1 1 2

1.3 * 2

2.6 weighted risk rating

XSS Example

1

2

3

 Security intelligence

The ‘new’ OWASP Top Ten (2010 rc1)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10

 Security intelligence

A1 – Injection

• Tricking an application into including unintended commands in the data sent to an
interpreter

Injection means…

• Take strings and interpret them as commands

• SQL, OS Shell, LDAP, XPath, Hibernate, etc…

Interpreters…

• Many applications still susceptible (really don‟t know why)

• Even though it‟s usually very simple to avoid

SQL injection is still quite common

• Usually severe. Entire database can usually be read or modified

• May also allow full database schema, or account access, or even OS level access

Typical Impact

 Security intelligence

SQL Injection – Illustrated

F
ir
e
w

a
ll

Hardened OS

Web Server

App Server

F
ir
e
w

a
ll

D
a
ta

b
a
s
e
s

L
e
g
a
c
y
 S

y
s
te

m
s

W
e
b
 S

e
rv

ic
e
s

D
ir
e
c
to

ri
e
s

H
u
m

a
n
 R

e
s
rc

s

B
ill

in
g

Custom Code

APPLICATION

ATTACK

N
e
tw

o
rk

 L
a
y
e
r

A
p
p
lic

a
ti
o
n
 L

a
y
e
r

A
c
c
o
u
n
ts

F
in

a
n
c
e

A
d
m

in
is

tr
a
ti
o
n

T
ra

n
s
a
c
ti
o
n
s

C
o
m

m
u
n
ic

a
ti
o
n

K
n
o
w

le
d
g
e
 M

g
m

t

E
-C

o
m

m
e
rc

e

B
u
s
.
F

u
n
c
ti
o
n
s

HTTP

request

SQL

query

DB Table

HTTP

response

"SELECT * FROM

accounts WHERE

acct=‘’ OR

1=1--’"

1. Application presents a form to

the attacker

2. Attacker sends an attack in

the form data

3. Application forwards attack to

the database in a SQL query

Account Summary

Acct:5424-6066-2134-4334

Acct:4128-7574-3921-0192

Acct:5424-9383-2039-4029

Acct:4128-0004-1234-0293

4. Database runs query

containing attack and sends

encrypted results back to

application

5. Application decrypts data as

normal and sends results to the

user

Account:

SKU:
Account:

SKU:

 Security intelligence

A1 – Avoid Injection Flaws

• Recommendations

1. Avoid the interpreter entirely, or

2. Use an interface that supports bind variables (e.g., prepared statements, or
stored procedures),

• Bind variables allow the interpreter to distinguish between code and data

3. Encode all user input before passing it to the interpreter

– Always perform „white list‟ input validation on all user supplied input

– Always minimize database privileges to reduce the impact of a flaw

• References

– For more details, read the new
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

 Security intelligence

A2 – Cross-Site Scripting (XSS)

•Raw data from attacker is sent to an innocent user‟s browser

Occurs any time…

•Stored in database

•Reflected from web input (form field, hidden field, URL, etc…)

•Sent directly into rich JavaScript client

Raw data…

•Try this in your browser – javascript:alert(document.cookie)

Virtually every web application has this problem

•Steal user‟s session, steal sensitive data, rewrite web page, redirect user to
phishing or malware site

•Most Severe: Install XSS proxy which allows attacker to observe and direct all
user‟s behavior on vulnerable site and force user to other sites

Typical Impact

 Security intelligence

Cross-Site Scripting Illustrated

Application

with stored

XSS

vulnerability

3

2

Attacker sets the trap –

update my profile

Attacker enters a

malicious script into a

web page that stores

the data on the server

1

Victim views page – sees

attacker profile

Script silently sends attacker

Victim’s session cookie

Script runs inside

victim’s browser with

full access to the DOM

and cookies

Custom Code

A
c
c
o
u
n
ts

F
in

a
n
c
e

A
d
m

in
is

tr
a
ti
o
n

T
ra

n
s
a
c
ti
o
n
s

C
o
m

m
u
n
ic

a
ti
o
n

K
n
o
w

le
d
g
e

M
g
m

t
E

-C
o
m

m
e
rc

e

B
u
s
.
F

u
n
c
ti
o
n
s

 Security intelligence

A2 – Avoiding XSS Flaws

• Recommendations

– Eliminate Flaw

• Don‟t include user supplied input in the output page

– Defend Against the Flaw

• Primary Recommendation: Output encode all user supplied input

(Use OWASP‟s ESAPI to output encode:

http://www.owasp.org/index.php/ESAPI

• Perform „white list‟ input validation on all user input to be included in page

• For large chunks of user supplied HTML, use OWASP‟s AntiSamy to sanitize
this HTML to make it safe

See: http://www.owasp.org/index.php/AntiSamy

http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/AntiSamy

 Security intelligence

Safe Escaping Schemes in Various HTML Execution Contexts

HTML Style Property Values
(e.g., .pdiv a:hover {color: red; text-decoration:

underline})

JavaScript Data
(e.g., <script> some javascript </script>)

HTML Attribute Values
(e.g., <input name='person' type='TEXT'

value='defaultValue'>)

HTML Element Content
(e.g., <div> some text to display </div>)

URI Attribute Values
(e.g., <a href="javascript:toggle('lesson')")

#4: All non-alphanumeric < 256 \HH

ESAPI: encodeForCSS()

#3: All non-alphanumeric < 256 \xHH

ESAPI: encodeForJavaScript()

#1: (&, <, >, ") &entity; (', /) &#xHH;

ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256 &#xHH

ESAPI: encodeForHTMLAttribute()

#5: All non-alphanumeric < 256 %HH

ESAPI: encodeForURL()

ALL other contexts CANNOT include Untrusted Data
Recommendation: Only allow #1 and #2 and disallow all others

See: www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet for more details

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

 Security intelligence

A3 – Broken Authentication and
Session Management

•Means credentials have to go with every request

•Should use SSL for everything requiring authentication

HTTP is a “stateless” protocol

•SESSION ID used to track state since HTTP doesn‟t

•and it is just as good as credentials to an attacker

•SESSION ID is typically exposed on the network, in browser, in logs, …

Session management flaws

•Change my password, remember my password, forgot my password, secret
question, logout, email address, etc…

Beware the side-doors

•User accounts compromised or user sessions hijacked

Typical Impact

 Security intelligence

Broken Authentication Illustrated

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
s
a
c
ti

o
n

s

C
o

m
m

u
n

ic
a
ti

o
n

K
n

o
w

le
d

g
e

M
g

m
t

E
-C

o
m

m
e
rc

e

B
u

s
.
F

u
n

c
ti

o
n

s1 User sends credentials

2Site uses URL rewriting

(i.e., put session in URL)

3 User clicks on a link to

http://www.hacker.com in a forum

www.boi.com?JSESSIONID=9FA1DB9EA...

4

Hacker checks referer logs on

www.hacker.com

and finds user’s JSESSIONID
5 Hacker uses JSESSIONID

and takes over victim’s

account

http://www.hacker.com/
http://www.hacker.com/

 Security intelligence

A3 – Avoiding Broken Authentication and Session
Management

• Verify your architecture

– Authentication should be simple, centralized, and standardized

– Use the standard session id provided by your container

– Be sure SSL protects both credentials and session id at all times

• Verify the implementation

– Forget automated analysis approaches

– Check your SSL certificate

– Examine all the authentication-related functions

– Verify that logoff actually destroys the session

– Use OWASP‟s WebScarab to test the implementation

 Security intelligence

A4 – Insecure Direct Object References

• This is part of enforcing proper “Authorization”, along with
A7 – Failure to Restrict URL Access

How do you protect access to your data?

• Only listing the „authorized‟ objects for the current user, or

• Hiding the object references in hidden fields

• … and then not enforcing these restrictions on the server side

• This is called presentation layer access control, and doesn‟t work

• Attacker simply tampers with parameter value

A common mistake …

• Users are able to access unauthorized files or data

Typical Impact

 Security intelligence

Insecure Direct Object References Illustrated

• Attacker notices his acct
parameter is 6065

?acct=6065

• He modifies it to a nearby
number

?acct=6066

• Attacker views the victim‟s
account information

https://www.onlinebank.com/user?acct=

6065

 Security intelligence

A4 – Avoiding Insecure Direct Object References

• Eliminate the direct object reference

– Replace them with a temporary mapping value (e.g. 1, 2, 3)

– ESAPI provides support for numeric & random mappings

• IntegerAccessReferenceMap & RandomAccessReferenceMap

• Validate the direct object reference

– Verify the parameter value is properly formatted

– Verify the user is allowed to access the target object

• Query constraints work great!

– Verify the requested mode of access is allowed to the target object (e.g., read, write,
delete)

http://app?file=1

Report123.xls

http://app?id=7d3J93

Acct:9182374
http://app?id=9182374

http://app?file=Report123.xls

Access

Reference

Map

http://app/?file=1
http://app/?file=1
http://app/?id=7d3J93
http://app/?id=7d3J93
http://app/?id=7d3J93
http://app/?id=7d3J93
http://app/?id=7d3J93
http://app/?id=7d3J93

 Security intelligence

A5 – Cross Site Request Forgery (CSRF)

•An attack where the victim‟s browser is tricked into issuing a command to a
vulnerable web application

•Vulnerability is caused by browsers automatically including user authentication
data (session ID, IP address, Windows domain credentials, …) with each
request

Cross Site Request Forgery

•What if a hacker could steer your mouse and get you to click on links in your
online banking application?

•What could they make you do?

Imagine…

• Initiate transactions (transfer funds, logout user, close account)

•Access sensitive data

•Change account details

Typical Impact

 Security intelligence

CSRF Vulnerability Pattern

• The Problem

– Web browsers automatically include most credentials with each request

– Even for requests caused by a form, script, or image on another site

• All sites relying solely on automatic
credentials are vulnerable!

– (almost all sites are this way)

• Automatically Provided Credentials

– Session cookie

– Basic authentication header

– IP address

– Client side SSL certificates

– Windows domain authentication

 Security intelligence

CSRF Illustrated

3

2

Attacker sets the trap on some website on the internet

(or simply via an e-mail)1

While logged into vulnerable site,

victim views attacker site

Vulnerable site sees

legitimate request

from victim and

performs the action

requested

 tag loaded by

browser – sends GET

request (including

credentials) to

vulnerable site

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
s
a
c
ti

o
n

s

C
o

m
m

u
n

ic
a
ti

o
n

K
n

o
w

le
d

g
e

M
g

m
t

E
-C

o
m

m
e
rc

e

B
u

s
.
F

u
n

c
ti

o
n

s

Hidden tag

contains attack

against vulnerable

site

Application with

CSRF vulnerability

 Security intelligence

A5 – Avoiding CSRF Flaws

• Add a secret, not automatically submitted, token to ALL sensitive requests
– This makes it impossible for the attacker to spoof the request

• (unless there‟s an XSS hole in your application)
– Tokens should be cryptographically strong or random

• Options
– Store a single token in the session and add it to all forms and links

• Hidden Field: <input name="token" value="687965fdfaew87agrde"
type="hidden"/>

• Single use URL: /accounts/687965fdfaew87agrde

• Form Token: /accounts?auth=687965fdfaew87agrde …
– Beware exposing the token in a referer header

• Hidden fields are recommended
– Can have a unique token for each function

• Use a hash of function name, session id, and a secret
– Can require secondary authentication for sensitive functions (e.g., eTrade)

• Don‟t allow attackers to store attacks on your site
– Properly encode all input on the way out
– This renders all links/requests inert in most interpreters

See the new: www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet for more details

http://www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet

 Security intelligence

A6 – Security Misconfiguration

• All through the network and platform

• Don‟t forget the development environment

Web applications rely on a secure foundation

• Think of all the places your source code goes

• Security should not require secret source code

Is your source code a secret?

• All credentials should change in production

CM must extend to all parts of the application

• Install backdoor through missing network or server patch

• XSS flaw exploits due to missing application framework patches

• Unauthorized access to default accounts, application functionality or data, or
unused but accessible functionality due to poor server configuration

Typical Impact

 Security intelligence

Hardened OS

Web Server

App Server

Framework

Security Misconfiguration Illustrated

App Configuration

Custom Code

A
c
c
o
u
n
ts

F
in

a
n
c
e

A
d
m

in
is

tr
a
ti
o
n

T
ra

n
s
a
c
ti
o
n
s

C
o
m

m
u
n
ic

a
ti
o
n

K
n
o
w

le
d
g
e
 M

g
m

t

E
-C

o
m

m
e
rc

e

B
u
s
.
F

u
n
c
ti
o
n
s

Test Servers

QA Servers

Source Control

Development

Databa

se

Insider

 Security intelligence

A6 – Avoiding Security Misconfiguration
• Verify your system‟s configuration management

– Secure configuration “hardening” guideline

• Automation is REALLY USEFUL here

– Must cover entire platform and application

– Keep up with patches for ALL components

• This includes software libraries, not just OS and Server applications

– Analyze security effects of changes

• Can you “dump” the application configuration

– Build reporting into your process

– If you can‟t verify it, it isn‟t secure

• Verify the implementation

– Scanning finds generic configuration and missing patch problems

 Security intelligence

A7 – Failure to Restrict URL Access

• This is part of enforcing proper “authorization”, along with
A4 – Insecure Direct Object References

How do you protect access to URLs (pages)?

• Displaying only authorized links and menu choices

• This is called presentation layer access control, and doesn‟t work

• Attacker simply forges direct access to „unauthorized‟ pages

A common mistake …

• Attackers invoke functions and services they‟re not authorized for

• Access other user‟s accounts and data

• Perform privileged actions

Typical Impact

 Security intelligence

Failure to Restrict URL Access Illustrated

• Attacker notices the URL
indicates his role

/user/getAccounts

• He modifies it to another
directory (role)

/admin/getAccounts, or

/manager/getAccounts

• Attacker views more accounts
than just their own

https://www.onlinebank.com/user/getAccountshttps://www.onlinebank.com/user/getAccounts

 Security intelligence

A7 – Avoiding URL Access Control Flaws
• For each URL, a site needs to do 3 things

– Restrict access to authenticated users (if not public)

– Enforce any user or role based permissions (if private)

– Completely disallow requests to unauthorized page types (e.g., config files, log files, source
files, etc.)

• Verify your architecture

– Use a simple, positive model at every layer

– Be sure you actually have a mechanism at every layer

• Verify the implementation

– Forget automated analysis approaches

– Verify that each URL in your application is protected by either

• An external filter, like Java EE web.xml or a commercial product

• Or internal checks in YOUR code – Use ESAPI‟s isAuthorizedForURL() method

– Verify the server configuration disallows requests to unauthorized file types

– Use WebScarab or your browser to forge unauthorized requests

 Security intelligence

A8 – Unvalidated Redirects and Forwards

• And frequently include user supplied parameters in the destination URL

• If they aren‟t validated, attacker can send victim to a site of their
choice

Web application redirects are very common

• They internally send the request to a new page in the same application

• Sometimes parameters define the target page

• If not validated, attacker may be able to use unvalidated forward to
bypass authentication or authorization checks

Forwards (aka Transfer in .NET) are common too

• Redirect victim to phishing or malware site

• Attacker‟s request is forwarded past security checks, allowing
unauthorized function or data access

Typical Impact

 Security intelligence

Unvalidated Redirect Illustrated

3

2

Attacker sends attack to victim via email or
webpage

From: Internal Revenue Service

Subject: Your Unclaimed Tax

Refund

Our records show you have an

unclaimed federal tax refund.

Please click here to initiate your

claim.

1

Application redirects
victim to attacker’s
site

Request sent to

vulnerable site, including

attacker’s destination site

as parameter. Redirect

sends victim to attacker

site

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
s

a
c
ti

o
n

s

C
o

m
m

u
n

ic
a
ti

o
n

K
n

o
w

le
d

g
e

 M
g

m
t

E
-C

o
m

m
e
rc

e

B
u

s
.
F

u
n

c
ti

o
n

s

4 Evil site installs malware
on victim, or phish’s for
private information

Victim clicks link containing unvalidated
parameter

Evil Site

http://www.irs.gov/taxrefund/claim.jsp?year=2
006& … &dest=www.evilsite.com

http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&

 Security intelligence

Unvalidated Forward Illustrated

2

Attacker sends attack to vulnerable page they have access to1

Application
authorizes request,
which continues to
vulnerable page

Request sent to

vulnerable page which

user does have access

to. Redirect sends user

directly to private

page, bypassing

access control.

3 Forwarding page fails to validate
parameter, sending attacker to
unauthorized page, bypassing
access controlpublic void doPost(HttpServletRequest request,

HttpServletResponse response) {
try {

String target = request.getParameter("dest"));
...
request.getRequestDispatcher(target
).forward(request, response);

}
catch (...

Filter

public void sensitiveMethod(
HttpServletRequest request,
HttpServletResponse response) {

try {
// Do sensitive stuff here.
...

}
catch (...

 Security intelligence

A8 – Avoiding Unvalidated Redirects and Forwards

• There are a number of options

1. Avoid using redirects and forwards as much as you can

2. If used, don‟t involve user parameters in defining the target URL

3. If you „must‟ involve user parameters, then either

a) Validate each parameter to ensure its valid and authorized for the current user, or

b) (preferred) – Use server side mapping to translate choice provided to user with actual target page

– Defense in depth: For redirects, validate the target URL after it is calculated to make sure it
goes to an authorized external site

– ESAPI can do this for you!!

• See: SecurityWrapperResponse.sendRedirect(URL)

• http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/
SecurityWrapperResponse.html#sendRedirect(java.lang.String)

• Some thoughts about protecting Forwards

– Ideally, you‟d call the access controller to make sure the user is authorized before you
perform the forward (with ESAPI, this is easy)

– With an external filter, like Siteminder, this is not very practical

– Next best is to make sure that users who can access the original page are ALL authorized to
access the target page.

http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html

 Security intelligence

A9 – Insecure Cryptographic Storage

• Failure to identify all sensitive data

• Failure to identify all the places that this sensitive data gets stored
• Databases, files, directories, log files, backups, etc.

• Failure to properly protect this data in every location

Storing sensitive data insecurely

• Attackers access or modify confidential or private information
• e.g, credit cards, health care records, financial data (yours or your

customers)

• Attackers extract secrets to use in additional attacks

• Company embarrassment, customer dissatisfaction, and loss of trust

• Expense of cleaning up the incident, such as forensics, sending
apology letters, reissuing thousands of credit cards, providing identity
theft insurance

• Business gets sued and/or fined

Typical Impact

 Security intelligence

Insecure Cryptographic Storage
Illustrated

Custom Code

A
c

c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
s

a
c

ti
o

n
s

C
o

m
m

u
n

ic
a

ti
o

n
K

n
o

w
le

d
g

e

M
g

m
t

E
-C

o
m

m
e

rc
e

B
u

s
.
F

u
n

c
ti

o
n

s1
Victim enters credit

card number in form

2Error handler logs CC

details because merchant

gateway is unavailable

4 Malicious

insider

steals 4

million

credit card

numbers

Log

files

3Logs are accessible to all

members of IT staff for

debugging purposes

 Security intelligence

A9 – Avoiding Insecure Cryptographic Storage

• Verify your architecture

– Identify all sensitive data

– Identify all the places that data is stored

– Ensure threat model accounts for possible attacks

– Use encryption to counter the threats, don‟t just „encrypt‟ the data

• Protect with appropriate mechanisms

– File encryption, database encryption, data element encryption

• Use the mechanisms correctly

– Use standard strong algorithms

– Generate, distribute, and protect keys properly

– Be prepared for key change

 Security intelligence

A9 – Avoiding Insecure Cryptographic Storage

• Verify the implementation

– A standard strong algorithm is used, and it‟s the proper algorithm for
this situation

– All keys, certificates, and passwords are properly stored and
protected

– Safe key distribution and an effective plan for key change are in
place

– Analyze encryption code for common flaws

 Security intelligence

A10 – Insufficient Transport Layer Protection

• Failure to identify all sensitive data

• Failure to identify all the places that this sensitive data is sent
• On the web, to backend databases, to business partners, internal

communications

• Failure to properly protect this data in every location

Transmitting sensitive data insecurely

• Attackers access or modify confidential or private information
• e.g, credit cards, health care records, financial data (yours or your

customers)

• Attackers extract secrets to use in additional attacks

• Company embarrassment, customer dissatisfaction, and loss of trust

• Expense of cleaning up the incident

• Business gets sued and/or fined

Typical Impact

 Security intelligence

Insufficient Transport Layer
Protection Illustrated

Custom Code

Employees

Business Partners
External Victim Backend Systems

External Attacker

1 External

attacker

steals

credential

s and

data off

2

Internal

attacker

steals

credentials

and data

Internal Attacker

http://www.swbic.org/products/clipart/images/computeruser.jpg
http://www.swbic.org/products/clipart/images/computeruser.jpg

 Security intelligence

A10 – Avoiding Insufficient Transport Layer Protection

• Protect with appropriate mechanisms

– Use TLS on all connections with sensitive data

– Individually encrypt messages before transmission

• E.g., XML-Encryption

– Sign messages before transmission

• E.g., XML-Signature

• Use the mechanisms correctly

– Use standard strong algorithms (disable old SSL algorithms)

– Manage keys/certificates properly

– Verify SSL certificates before using them

– Use proven mechanisms when sufficient

• E.g., SSL vs. XML-Encryption

• See: http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat
_Sheet for more details

http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

 Security intelligence

Summary: How do you address these problems?

• Develop Secure Code

– Follow the best practices in OWASP‟s Guide to Building Secure Web Applications

• http://www.owasp.org/index.php/Guide

– Use OWASP‟s Application Security Verification Standard as a guide to what an application
needs to be secure

• http://www.owasp.org/index.php/ASVS

– Use standard security components that are a fit for your organization

• Use OWASP‟s ESAPI as a basis for your standard components

• http://www.owasp.org/index.php/ESAPI

• Review Your Applications

– Have an expert team review your applications

– Review your applications yourselves following OWASP Guidelines

• OWASP Code Review Guide:
http://www.owasp.org/index.php/Code_Review_Guide

• OWASP Testing Guide:
http://www.owasp.org/index.php/Testing_Guide

http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Testing_Guide

 Security intelligence

OWASP (ESAPI)

Custom Enterprise Web Application

OWASP Enterprise Security API

A
u

th
e

n
ti

c
a

to
r

U
s
e

r

A
c
c
e

s
s
C

o
n

tr
o

ll
e

r

A
c
c
e

s
s
R

e
fe

re
n

c
e

M
a

p

V
a

li
d

a
to

r

E
n

c
o

d
e

r

H
T

T
P

U
ti

li
ti

e
s

E
n

c
ry

p
to

r

E
n

c
ry

p
te

d
P

ro
p

e
rt

ie
s

R
a

n
d

o
m

iz
e

r

E
x

c
e

p
ti

o
n

 H
a

n
d

li
n

g

L
o

g
g

e
r

In
tr

u
s
io

n
D

e
te

c
to

r

S
e

c
u

ri
ty

C
o

n
fi

g
u

ra
ti

o
n

Your Existing Enterprise Services or Libraries

ESAPI Homepage: http://www.owasp.org/index.php/ESAPI

http://www.owasp.org/index.php/ESAPI

